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Abstract

The purpose of the present work is the study of open quantum systems, i.e., quan-
tum systems surrounded by an environment with which they interact. We present
the basic models that describe this situation, and show a method to study the evo-
lution. We apply this evolution to various kinds of environments, and consider the
novel interesting case of a system coupled to two environments in a hierarchical way.

1 Introduction

We are going to focus our study on Open Quantum Systems (OQS). An OQS is a quantum-
mechanical system which interacts with an external, usually much larger, quantum system:
the environment [1, 2]. In practice, each quantum system should be considered as an
OQS to some extent as full isolation in the quantum world is impracticable, therefore
this field of study is applicable almost to any quantum discipline. The most important
ones are quantum optics, quantum computing and quantum information, measurement
theory, quantum thermodynamics, as well as quantum statistics. In most situations the
environment may have a large number of degrees of freedom, even infinitely many, which
makes the problem hard to tackle with. Even when the study of the full system (OQS
and environment) is possible, it requires a lot of computational power. That’s why some
approximate methods have to be developed to account for the environment, but finally
focus on the sole evolution of the OQS. The theory of OQS seeks the understanding of
the dynamics of the system.

The principal effects that open quantum systems undergo are quantum dissipation, which
is the transfer of energy from the OQS onto the environment, and quantum decoherence.
This last effect has a fundamental role in understanding the quantum-to-classical transi-
tion [3], that is, how is that the world is described by quantum mechanics, yet no quantum
mechanical effect is observed at macroscopic scales. Decoherence plays the role of washing
out quantum mechanical effects, namely, the loss of quantum entanglement or, in other
words, quantum correlations. The effect that the environment induces onto the OQS has
been extensively studied for very different environments, depending on its temperature,
the number of degrees of freedom, its coupling strength to the OQS, its density of states,
etc.

The standard scenario considered is that in which the open system is directly coupled to a
single environment, which is assumed to be initially in an equilibrium state. Both system
and environment are assumed to conform a closed system that may evolve according to a
highly complex but still unitary dynamics. This idea has been extended to the case where
the open system is coupled to two or more environments at different temperatures, as it
occurs in the context of quantum thermodynamics. However, the case where the open
system is coupled to an environment, which in turn is coupled to a second one that acts as
a reservoir for it, has not been studied in the literature, to the best of our knowledge. This
situation can represent, for instance, atoms coupled to the electromagnetic field within
a waveguide that includes vibrational modes, i.e. in the presence of an optomechanical
coupling. In this case a new time scale comes into play, which is that of the relaxation
of the first environment when coupled to the second one. During such relaxation time
the first environment is taken away from its equilibrium initial state, and therefore its
fluctuations are no longer the equilibrium ones. The interesting aspect is that, accord-
ing the the theory of open system which we will extend in this work, such environment
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System

(S,HS, ρS)

Environment

(E,HE, ρE)

(S + E,HS ⊗HE, ρ)

Figure 1: Schematic picture of an open quantum system. The total system S + E is
isollated, and the central OQS S interacts with the environment E.

fluctuations will also determine the open system dynamics, leading to dissipation and de-
coherence processes that are crucially affected by the presence of the second environment.
In this work we present the theoretical framework and explore some effects that this new
paradigm can have in the theory of OQS.

The common approach in the study of OQS is to describe the quantum states of the total
system using the density matrix formalism to consider pure states, as well as ensembles
of pure states (mixed states). The density matrix is a positive trace class operator on the
Hilbert space of the system it describes. A trace class operator is an operator in a Hilbert
space H for which a trace may be defined, such that it is finite and independent of the
choice of basis. The following properties characterize the density matrix operator:

• Hermiticity ρ = ρ† This property ensures that the eigenvalues of the density
matrix are all real and that there exists an orthogonal basis to express this matrix
in the diagonal form.

• Normalization Density operators represent state probabilities, therefore, some
normalization is required, namely, Trρ = 1. Following from the independence of the
trace and the previous property, the trace of any density operator is Trρ =

∑
i λi,

where λi are the eigenvalues of ρ.

• Positive semi-defined ρ ≥ 0 An operator is positive semi-defined iff 〈n|ρ|n〉 ≥ 0
for any |n〉 ∈ H, which is equivalent to say that each eigenvalue of ρ is greater than
or equal to 0. This property ensures that there are not negative probabilities.

• Expectation values are calculated as follows, 〈A〉 = Tr{ρA}.

The Hilbert space of the total system is the tensor product of the individual Hilbert spaces,
i.e., H = HS ⊗ HE. The theory of OQS describes the state of the system and not that
of the environment. This implies to put aside the environment state via partial tracing
the total density matrix with respect to the environment. That is ρS = TrE{ρ}, where
ρS ∈ HS and ρ ∈ H. The partial trace is defined as TrE{ρ} =

∑
n(1S ⊗ 〈n|)ρ(1S ⊗ |n〉),

where 1S is the identity operator in the Hilbert space of the OQS and {|n〉} forms an
orthonormal basis in HE. A schematic diagram of this situation is shown in Fig. 1.

This work is aimed on the study of the dynamics of the reduced density matrix of the
system for different environments. To do so, we will introduce some elementary models
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to describe the evolution of OQS in section 2. In section 3 we introduce a function that
encodes the action of the environment, and present a model that is commonly used. We
introduce some basic concepts about the evolution of the reduced density matrix in section
4, where we will introduce the concept of Markovianity and the canonical master equation
to describe a process of this kind. We also present the concept of non-Markovianity, its
physical implications and a quantitative expression. In section 5 we will derive a master
equation perturbatively. This master equation will be used for a variety of setups: the
Weisskopf-Wigner theory in section 6, a pure dephasing mechanism in section 7, a thermal
bath in section 8, and a thermal bath that is in turn coupled to another thermal bath in
section 9.
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2 OQS Models

There are many canonical models to describe OQS at low energies. We will consider
only environments formed by harmonic oscillators, but there are models which deal with
spin environments as well. These canonical models are formed by a central OQS linearly
coupled to the environment. See Fig. 1 for a schematic diagram of this situation. The
Hamiltonian for these canonical models have the following structure.

H = H0 +HI , (1)

where H0 is the free Hamiltonian of both the system and the environment, and HI is the
interaction Hamiltonian. The free Hamiltonian is composed by 2 terms, describing the
free evolution of each system

H0 = HS ⊗ 1E + 1S ⊗HE , (2)

where HS acts on HS and HE on HE and 1 is the identity operator of each Hilbert
space. We will use the shorthand notation H0 = HS + HE, where it is understood to
which Hilbert space each Hamiltonian belongs, that is we drop the identity operator
whenever possible. We may also drop the tensor product symbol in future sections, where
multiplication between operators living in different Hilbert spaces is understood to be of
this nature. The interaction Hamiltonian acts on to the total Hilbert space as it describes
the interaction between the system and the environment. The most general form that the
interaction Hamiltonian can have that preserves the hermiticity property is [4]:

HI =
∑
i

(Li ⊗B†i + L†i ⊗Bi) , (3)

where Li are operators acting on HS and Bi on HE. We now present two of the most
used models of OQS.

2.1 Spin-Boson model

The Spin-Boson model describes a spin-1
2

particle coupled to a environment composed of
harmonic oscillators [1, 2, 5]. This model is of extreme importance in fields that deal with
2 level systems, or even with systems that have more degrees, but some of them can be
truncated, in the low energy range, to present effectively two possible states. The free
Hamiltonian for such a system is

H0 =
1

2
ω0σz +

∑
λ

ωλa
†
λaλ , (4)

where natural units have been used (~ = 1), ω0 is the energy separation of the 2 level
system, a†λ and aλ are the creation and annihilation operators of the λ oscillator with
frequency ωλ and any σX represents a Pauli matrix. Note that the vacuum energy of the
harmonic oscillators of the environment has not been considered, as it only accounts for
a constant shift in the energy. It is common to add a term of the form 1

2
∆0σx which

represents the tunneling between the two levels of the spin-1
2

system [6]. The interaction
Hamiltonian has the form

HI = σx
∑
λ

(g∗λa
†
λ + gλaλ) = σx

(
B† +B

)
, (5)
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where we defined B =
∑

λ gλaλ, gλ is the coupling strength between the spin and the
λ oscillator, and σx can be decomposed as raising and lowering operators on the 2 level
system as σx = σ+ + σ−, so that σ+ |−〉 = |+〉 and σ− |+〉 = |−〉, with |+〉 and |−〉
representing the upper and lower level of the OQS, respectively. It is often usual to
simplify this Hamiltonian by assuming the rotating wave approximation (RWA). If we
express the Hamiltonian (5) in the interaction picture, where the operators σ± and aλ
take the form

σ̂±(t) = σ±e
±iω0t , (6)

and
âλ(t) = aλe

−iωλt , (7)

we get

ĤI(t) =
∑
λ

(
gλσ+aλe

i(ω0−ωλ)t + g∗λσ−a
†
λe
−i(ω0−ωλ)t + g∗λσ+a

†
λe
i(ω0+ωλ)t + gλσ−aλe

−i(ω0+ωλ)t
)
.

(8)

The RWA consists in keeping only the resonant terms, that is the terms that rotate with
frequencies |ω0 − ωλ|. In this approximation the terms that do not conserve energy are
discarded, i.e., those terms that correspond to a simultaneous excitation of the 2 level
system and the creation of an energy quantum in the bosonic field, or the decay of the
exited state and the annihilation of a boson. Within this approximation the interaction
Hamiltonian becomes

HI =
∑
λ

(
g∗λσ−a

†
λ + gλσ+aλ

)
. (9)

The dynamics of this model is extremely rich, and is the main point of this work, where
we study the evolution of a 2 level system coupled to a continuum of harmonic oscillators
which are in thermal equilibrium. The usual example of a system described by this model
is a two-level atom interacting with the vacuum quantized modes of an optical cavity.
This particular situation is described by the so-called Jaynes-Cummings model (JCM)
[7], which is exactly solvable under the RWA. This model will be of particular interest
to check whether the approach we take in the following sections to describe the OQS
dynamics reproduces the exact dynamics of the JCM.

2.2 Caldeira-Leggett model

The Caldeira-Leggett model was introduced in 1983 [8, 9] to describe the effect of dissi-
pation of a particle coupled to an environment. It describes a particle with mass m and
coordinate x under the effect of a potential V (x), coupled to an environment of harmonic
oscillators. The free Hamiltonian of the particle plus the environment is described by

H0 =
1

2m
p2 + V (x) +

∑
n

(
1

2mn

p2
n +

1

2
mnωnx

2
n

)
, (10)

where p is the momentum of the particle and pn, mn and xn are the momentum, mass and
position of the n-th oscillator of the environment, respectively. The interaction between
the particle and the environment is supposed to be of the form

HI = −x
∑
n

knxn , (11)
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with kn the coupling strength to the n-th oscillator. This interaction will yield a renor-
malization of the potential of the particle, so that a counter term is added to the total
Hamiltonian of the system, which acts only on the Hilbert space of the OQS. This model
has been of great importance, as it describes the quantum Brownian motion and allows a
description of classical dissipation from a quantum point of view when taking the classical
limit.
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3 Characterizing the environment

For environments described by a discrete set of harmonic oscillators, the interaction is
characterized by the spectral density, defined as

J(ω) = π
∑
λ

g2
λδ(ω − ωλ) , (12)

where gλ are the couplings between the OQS and the λ-th oscillator of the environment.
This function encodes the effect that the environment has onto the OQS. Such action can
also be characterized by the environment correlation function, which for environments
that are at zero temperature, becomes a partial Fourier transform of J(ω)

α(t) =

∫ ∞
0

dωJ(ω)e−iωt . (13)

These correlation functions will be re-defined when deriving a master equation for the
dynamics of the reduced density matrix of the OQS, and will play the role of past evolution
of the system, from which memory effects may take place. These effects will be further
discussed in the following section. These correlations will take different forms depending
on the properties of the environment we are dealing with. For instance, for thermal
environments, these functions will be modulated by the thermal distribution function. In
the limit of a large number of oscillators, a continuum representation of the couplings can
be performed gλ → g(ω). If we know the dispersion relation, the spectral density can be
written in the continuum as

J(ω) = g2(h(ω))DDOS(ω) , (14)

where h(ω) = k is the inverse dispersion relation, and DDOS(ω) = |∂ω(k)/∂k|−1 is the
bosonic density of states (DOS). Depending on the nature of the environment, different
nomenclature is used to refer to it. We will follow the standard nomenclature found in
the literature. We will use the word environment to refer to the more general subsystem
that is coupled to the OQS, assumed to be much larger than the OQS. A reservoir is an
environment with a continuum spectrum and the expression bath will be reserved to refer
to reservoirs that are in a thermal equilibrium state.

There exist two ways to obtain these spectral density functions. On the one hand, the
continuum version in Eq. (14) allows for a microscopic derivation of the spectral density
function if knowledge about the interaction is available, that is the expression for the
coupling constants gλ and the dispersion relation ω(k). This derivation is possible, for
example, for atoms interacting with electromagnetic fields, where the dispersion relation
relation in vacuum is well known, as well as the coupling constants. On the other hand, if
no microscopic description of the environment is available, a phenomenological modelling
of the spectral density is used. The most used model is the one by Caldeira and Leggett
[8],

J(ω) = gωse−ω/ωc , (15)

where the parameter g describes the coupling strength between the system and the envi-
ronment. The exponential factor provides a smooth regularization of the spectral density
function modulated by a cut-off frequency ωc. This cut-off frequency has to be prop-
erly chosen in accordance to other scales of the problem. The parameter ωc describes
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the bandwidth of the reservoir, a higher ωc describes a reservoir with more modes. A
Lorenz-Drude regularization could also be used, as in the case of the Breit-Wigner dis-
tribution function. Depending on the parameter s, many different types of reservoirs can
be described. Environments with 0 < s < 1 are called sub-ohmic, and those with s = 1
and s > 1 are considered as ohmic and super-ohmic, respectively. This spectral density
is widely used for its versality, for instance, for s = 1 represents the vacuum radiation,
and for s = 1/2 isotropic photonic crystalls. It can also model a phonon environment
where the parameter s can have various values depending on the dimension and symmetry
properties of the field [5].
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4 Evolution, Dynamical Maps, Master Equations and

Markovianity

The evolution of a quantum state is given by the Schrödinger equation, the equivalent for
density matrices is often referred to as the Liouville-von Neumann equation and has the
following expression

d

dt
ρ(t) = −i[H(t), ρ(t)] , (16)

where H(t) is the Hamiltonian of the total system. The solution to this equation is

ρ(t) = U(t, t0)ρ(to)U
†(t, t0) , (17)

where U(t, t0) is the unitary time evolution operator which, for time independent Hamil-
tonians, has the usual expression

U(t, t0) = e−iH(t−t0) . (18)

When dealing with Hamiltonians of the form (1), where H0 is time independent and HI

can be time dependent, it is usual to switch to the interaction picture. The density matrix
in the interaction picture is defined as

ρ̂(t) = U †0(t, t0)ρ(t)U0(t, t0) , (19)

where U0(t, t0) = exp[−iH0(t − t0)]. With this definition it is straightforward to see,
by direct differentiation and substitution of (16), that the evolution equation for the
interaction picture density matrix operator is

d

dt
ρ̂(t) = −i[V 0

t HI(t), ρ̂(t)] , (20)

where we defined V 0
t HI(t) = U †0(t, t0)HI(t)U0(t, t0), which is the interaction Hamiltonian

in the interaction picture. An equivalent equation, obtained by formal integration of (20),
is

ρ̂(t) = ρ̂(t0)− i
∫ t

t0

dτ [V 0
τ HI(τ), ρ̂(τ)] , (21)

which will be useful in deriving a perturbation approach for the dynamics of the reduced
density matrix of the system in the following section. If we now want to extract the
evolution of the OQS we can take the partial trace of equation (17)

ρS(t) = TrEρ(t) = TrE{U(t, t0)ρ(to)U
†(t, t0)} , (22)

which, in terms of the differential Eq. (16), is equivalent to

d

dt
ρS(t) = −iTrE[H(t), ρ(t)] . (23)

A common assumption to take is that the state of the OQS and the environment are
initially uncorrelated, i.e., ρ(0) = ρS(0)⊗ ρE(0), where we set t0 = 0 for simplicity. Now
TrEρ(0) = ρS(0) and the evolution of ρS(t) is given by (22). So the transformation φ(t)
that maps

ρS(0) 7→ ρS(t) = φ(t)ρS(0) = TrE{U(t, 0)ρ(0)U †(t, 0)} , (24)
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ρ(0) = ρS(0)⊗ ρE ρ(t) = U(t, 0)[ρS(0)⊗ ρE]U †(t, 0)

ρS(0) ρS(t) = φ(t)ρS(0)

TrE

unitary evolution

dynamical map

TrE

Figure 2: A diagram showing the action of the dynamical map φ(t). It is possible to
evolve the whole system and partial trace the environment to obtain the dynamics of the
OQS, or the evolution of the OQS can be described by the dynamical map.

is called a quantum dynamical map. A schematic diagram of this procedure is shown in
Fig. 2. A dynamical map must preserve the properties of the density matrix introduced
in the first section, that is, it must be a completely positive trace preserving (CPT) map.
A map is positive if it keeps the final density matrix positive. The condition of complete
positivity is a bit tricky. Imagine you have an auxiliary Hilbert space H̃ which has no
interaction at all with the OQS nor to the environment, then the map is completely
positive iff (φ(t) ⊗ 1)ρ̃ ≥ 0 with ρ̃ ∈ HS ⊗ H̃, for any H̃. The one parameter family
{φ(t)|t ≥ 0} describes the future time evolution of the open system and φ(0) is the
identity map. Note that only positive times are considered. This evolution can also be
expressed in the following way

ρS(t) = TrE{U(t, 0)(ρS(0)⊗ ρE(0))U †(t, 0)} =
∑
i,j

pi 〈j|U(t, 0)|i〉 ρS(0) 〈i|U †(t, 0)|j〉 ,

(25)

where the states |j〉 form an orthonormal basis in HE and the environment state was
decomposed in its diagonal form ρE(0) =

∑
i pi |i〉 〈i|, where

∑
i pi = 1. Defining the

Kraus operators as Kij =
√
pi 〈j|U(t, 0)|i〉 we can write

ρS(t) =
∑
i,j

Kij(t)ρS(0)K†ij(t) , (26)

where
∑

i,jKij(t)K
†
ij(t) = 1S.

There is a special sub-class of maps which obey the following additional property

φ(t1)φ(t2) = φ(t1 + t2), t1, t2 ≥ 0 , (27)

which is called the semigroup property. Maps obeying this property form a semigroup
as the map cannot have negative arguments, therefore, no inverse exists. This property
is also referred to as the divisibility property. Maps obeying this property are called
Markovian, that is, the evolution only depends of the previous instant of time and not
on the whole history of the system evolution. For maps with property (27) there exist a
linear operator L, the generator of the semigroup, which allows to express them in the
exponential form

φ(t) = eLt . (28)

From this fact and definition (24) a first-order differential equation for the reduced density
matrix of the system can be readily written as

d

dt
ρS(t) = LρS(t) , (29)
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which represents what is called a Markovian master equation for the dynamics of the
reduced matrix for the system, also called Lindblad master equation. It can formally be
shown [10, 11, 1] that the most general form of this generator, assuring that φ(t) is CPT
and divisible, is

LρS(t) = −i[H, ρs(t)] +
N2−1∑
k=1

γk

(
AkρS(t)A†k −

1

2
A†kAkρS(t)− 1

2
ρS(t)A†kAk

)
, (30)

where N is the dimension of the Hilbert space HS. The first term of the generator
represents the unitary part of the evolution of system S, although H cannot directly be
identified with the free Hamiltonian of the open system, because it may contain interaction
terms with the environment that cause a shift in the energies of the open system. The
second term is called the dissipator, and the operators Ak, called Lindblad operators,
describe the decay modes of the system, where the γk are their corresponding decay rates.
These decay rates have to be positive in order to keep the map φ(t) completely positive
and divisible.

The memoryless behavior that Markovian maps present describes well many physical
systems under certain assumptions. The assumption that a physical system has to obey
in order to be well described by a Markovian evolution is that the relaxation time of the
OQS is much larger than the one of the environment. In this scenario, any change that the
OQS induces into the environment will rapidly be washed out and the environment will
recover its initial state quasi instantaneously. This behavior of the system is described by
a correlation function of the environment that approximates a delta function α(t− τ) ∼
δ(t− τ), whereas the changes induced onto the OQS do not decay so fast. This allows to
evolve the OQS from its current state independently of the past evolution, as OQS and
environment stay uncorrelated along the whole process when the evolution is Markovian.

When such assumptions about the environment cannot be made, the previous dynamical
semigroup is broken and memory effects take part in the evolution. Processes in which
the evolution cannot be expressed as a dynamical semigroup are referred to as non-
Markovian, and the physical interpretation of what is happening is that there is a backflow
of information from the environment into the OQS. That is, Markovian processes reduce
the distinguishability between states of the OQS during the whole evolution, while, in the
non-Markovian case, the distinguishability can be recovered. Even thought the Markov
approximation is not valid for some physical situations, as long as the dynamical map
is invertible and differentiable, there exist a time local master equation for the reduced
density matrix operators. This is shown in [11] by computing the derivative of Eq. (26)
and decomposing the system operators in a basis of the Hilbert space of operators acting
on the OQS. The following master equation is obtained for the dynamics of the reduced
density matrix of the system

d

dt
ρS(t) = −i[H(t), ρs(t)] +

N2−1∑
k=1

γk(t)

(
Ak(t)ρS(t)A†k(t)−

1

2
{A†k(t)Ak(t), ρS(t)}

)
, (31)

whereN is again the dimension of the Hilbert spaceHS, but now the operators Ak(t) ∈ HE

and the decay rates γk(t) are time dependent. This is a non-Markovian generalization
of the Lindblad Eq. (29). Note that this equation can recover the canonical Markovian
equation if γk(t) ≥ 0, but that is not true in general. What is clear is that complete
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positivity cannot be achieved if the decay rates are negative, and during the time intervals
where γk(t) < 0 non-Markovian behavior will be present.

There are many proposed measures to quantify the degree of non-Markovianity, some are
based on the divisibility and complete positivity properties of the dynamical map and
others on the distinguishability of states. Each measure has their respective pros and
cons, and some are more suitable to describe some particular situations, but here we
present the one that is the most commonly used.

4.1 A non-Markovianity measure

The measure proposed by [12] quantifies the distinguishability of states, via the rate of
change of the trace distance. The trace distance between two states is defined as

D(ρ1, ρ2) =
1

2
Tr|ρ1 − ρ2| , (32)

where |A| =
√
AA†. The properties that make this measure appropriate for quantifying

non-Markovianity are the following.

• Trace distance is preserved for unitary operations: D(Uρ1U
†, Uρ2U

†) = D(ρ1, ρ2),
where U is a unitary transformation.

• All CPT maps reduce the trace distance between two states that are subjected to
the same map: D(φρ1, φρ2) ≤ D(ρ1, ρ2), where φ is a completely positive trace
preserving map. This mean that any CPT map cannot increase the trace distance
between two states.

The physical interpretation of this distance is that it constitutes a measure of state dis-
tinguishability. The rate of change of state distinguishability can be interpreted as a flow
of information between the open system and the environment. A CPT map will always
reduce the trace distance, and therefore a flow of information from the system onto the
environment is produced. The first property indicates that for closed systems (those that
undergo unitary evolution) the information is preserved.

For a Markovian process, information continuously flows outside the system. To have
non-Markovian effects, there should be some time intervals where information flows back
to the system. The rate of change of trace distance is defined as

σ(t, ρ1,2(0)) =
d

dt
D(ρ1(t), ρ2(t)) , (33)

where ρ1,2(t) = φ(t)ρ1,2(0). For a non-Markovian map φ(t) where at some intervals the
information flows back to the open system we must have σ > 0 for these intervals. The
measure for non-Markovianity as introduced by [12] should characterize the total amount
of information flowing from the environment back to the system. It is suggested to define
the measure N(φ) for the non-Markovianity of a quantum process described by φ(t, 0) as

N(φ) = max
ρ1,2(0)

∫
σ>0

dtσ(t, ρ1,2(0)) . (34)

This definition of non-Markovianity has the drawback that it requires to find the two
initial states ρ1,2(0) that maximize N(φ).
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5 Derivation of a weak coupling ME

There are many procedures to obtain a ME for the dynamics of the reduced system,
that is, the OQS density matrix. We are going to take the approach of a weak coupling
between the system and the environment. Suppose that HI(t) is proportional to a coupling
constant which we will denote in a generic way as g. This approach is equivalent to the
one in which assumptions in the decay time scales of the system and environment are
considered (first Markov approximation), as well as the consideration that the system and
environment are not only initially uncorrelated, but also throughout the whole evolution
(Born approximation). In our case, we consider that the OQS and the environment are
only initially uncorrelated, that is, ρ(0) = ρS(0)⊗ ρE(0).

We begin by considering Eq. (21) in the interaction picture and plugging it in the r.h.s.
of Eq. (20) for t0 = 0,

d

dt
ρ̂S(t) = −iTrE

[
V 0
t HI(t), ρ̂(0)

]
−
∫ t

0

dτ TrE
[
V 0
t HI(t),

[
V 0
τ HI(τ), ρ̂(τ)

]]
, (35)

which is an exact second order equation, O(g2). Now, if we take a further step and
integrate both sides of this equation, we get

ρ̂S(t) = ρ̂S(0)−i
∫ t

0

dτ TrE
[
V 0
t HI(τ), ρ̂(0)

]
−
∫ t

0

ds

∫ t

0

dτ TrE
[
V 0
s HI(s),

[
V 0
τ HI(τ), ρ̂(τ)

]]
.

(36)
We now insert this into Eq. (20) and keep only terms up to second order to obtain

d

dt
ρ̂S(t) = −iTrE

[
V 0
t HI(t), ρ̂(0)

]
−
∫ t

0

dτ TrE
[
V 0
t HI(t),

[
V 0
τ HI(τ), ρ̂(0)

]]
+O(g3) , (37)

which is now an approximate equation for ρ̂S(t). Note that this approximate equation
is very similar to Eq. (35), with the difference that the total density matrix, in the last
term, is now in the initial state. This is similar to a Markovian approximation in the
sense that the past evolution of the density matrix is being ignored, and only its initial
state is taken into account.

In most situations, as in this work, an environment composed by harmonic oscillators will
be considered. If we consider a linear theory, which is usually the case, the interaction
Hamiltonian will be linear in the creation and annihilation operators of the environment,
that is, to have B ∝ aλ in Eq. (3). The first term in the r.h.s. of Eq. (37) will be null,
as it represents the expectation value of single annihilation or creation operators of the
bosonic reservoir, which are always zero independently of the state of the bosonic bath
(See explicit calculation in Appendix A.1). We therefore obtain

d

dt
ρ̂S(t) = −

∫ t

0

dτ TrE
[
V 0
t HI(t),

[
V 0
τ HI(τ), ρ̂(0)

]]
, (38)

that can be formally integrated as before to lead to

ρ̂S(t) = ρ̂S(0)−
∫ t

0

ds

∫ t

0

dτ TrE
[
V 0
s HI(s),

[
V 0
τ HI(τ), ρ̂(0)

]]
, (39)

which implies that ρ̂S(t) = ρ̂S(0) +O(g2). We first see that

V 0
t HI = eiH0t(LB† + L†B)e−iH0t , (40)

14



where H0 = HS +HE and [HS, HE] = 0, can be expressed as

V 0
t HI = eiHStLe−iHSt eiHEtB†e−iHEt + eiHStL†e−iHSt eiHEtBe−iHEt . (41)

Making use of the definitions VtL = eiHStLe−iHSt and B(t) = eiHEtBe−iHEt the latter
equation can be rewritten as

V 0
t HI = VtL B

†(t) + VtL
† B(t) . (42)

Making use of these definitions and operating the r.h.s. term of Eq. (38) (See Appendix
A.2 for a detailed calculation) leads to

d

dt
ρ̂S(t) =

∫ t

0

dτTrE{B(t)†B(τ)ρ̂E(0)}
[
VτL

†ρ̂S(0), VtL
]

+

∫ t

0

dτTrE{B†(τ)B(t)ρ̂E(0)}
[
VtL, ρ̂S(0)VτL

†]
+

∫ t

0

dτTrE{B(t)B†(τ)ρ̂E(0)}
[
VτLρ̂S(0), VtL

†]
+

∫ t

0

dτTrE{B(τ)B†(t)ρ̂E(0)}
[
VtL

†, ρ̂S(0)VτL
]
. (43)

We can now define the correlation functions, which encode the action of the environment,
in the following way

α+(t, τ) = TrE{B(t)†B(τ)ρ̂E(0)}
α−(t, τ) = TrE{B(t)B†(τ)ρ̂E(0)} , (44)

to rewrite (43) as

d

dt
ρ̂S(t) =

∫ t

0

dτα+(t, τ)
[
VτL

†ρ̂S(0), VtL
]

+

∫ t

0

dτα+∗(t, τ)
[
VtL, ρ̂S(0)VτL

†]
+

∫ t

0

dτα−(t, τ)
[
VτLρ̂S(0), VtL

†]
+

∫ t

0

dτα−∗(t, τ)
[
VtL

†, ρ̂S(0)VτL
]
. (45)

Recall that ρ̂S(t) = ρ̂S(0)+O(g2), which allows to substitute ρ̂S(0) by ρ̂S(t) and still have
an equation valid up to second order in the coupling strength. Finally, if we apply the
previous change and switch to the Schrödinger picture (See Appendix A.3 for the detailed
procedure), we get the final equation for the dynamics of the OQS in the weak coupling
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limit

d

dt
ρS(t) = −i [HS, ρS(t)]

+

∫ t

0

dτα+(t, τ)
[
Vτ−tL

†ρS(t), L
]

+

∫ t

0

dτα+∗(t, τ)
[
L, ρS(t)Vτ−tL

†]
+

∫ t

0

dτα−(t, τ)
[
Vτ−tLρS(t), L†

]
+

∫ t

0

dτα−∗(t, τ)
[
L†, ρS(t)Vτ−tL

]
. (46)

This equation has a similar structure to that of Eqs. (29) and (30), with a free evolution
term, i.e., the first r.h.s. term in (46), and a dissipator, the remaining 4 terms. There is a
difference though, the dynamical map described by this ME is by no means a Markovian
map. The Markov limit could be recovered if the VtL terms evolve very slowly so that
the integration limits in (46) can be extended to infinity (second Markov approximation).
But complete positivity and the semigroup property are not in general recovered and
the secular approximation has to be considered. The secular approximation consists
on discarding fast oscillating terms at the level of the master equation and not in the
interaction Hamiltonian, as was the case of the RWA. In some situations the secular and
the RWA may be the same. Making use of theses approximations the ME can be recast
into the canonical Lindblad form. We stress the fact that Eq. (46) is a non-Markovian
master equation for the dynamics of the reduced density matrix of the OQS.

In the following sections we are going to describe different models where the above ME
can be used to solve the dynamics of the OQS. All the models are going to be of the
nature of the spin-boson model introduced in section 2.1. First of all, we present the
Weisskopf-Wigner theory of spontaneous decay, a well-known spin-boson model which
is exactly solvable under the RWA, and will be used to check whether the ME solution
derived before is in good agreement with the exact solution. Then we will introduce two
more models in which the environment is in a thermal state and have a more complex
structure.
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6 Weisskopf-Wigner theory of spontaneous decay

The Weisskopf-Wigner theory of spontaneous emission between two atomic levels was
introduced to describe the phenomenological decay of an atom in an exited state to
the ground state in a characteristic lifetime. This theory considers a continuum of field
modes to properly describe atomic decay: if only one mode is considered, there would be
an oscillation between the two levels of the system. This model is described by the total
Hamiltonian

H =
1

2
ω0σz +

∑
λ

ωλa
†
λaλ +

∑
λ

(
g∗λσ−a

†
λ + gλσ+aλ

)
, (47)

as described in section 2.1 under the RWA.

6.1 Exact solution

The exact solution of this model can be found in multiple textbooks, we followed the one
developed in [1]. The initial vacuum state of the environment allows to introduce the
following states

|ψ0〉 = |−〉S ⊗ |0〉E , (48)

|ψ1〉 = |+〉S ⊗ |0〉E , (49)

|ψλ〉 = |−〉S ⊗ |λ〉E , (50)

where |±〉S indicate the upper/lower level of the OQS, the state |0〉 denotes the vacuum

state of the reservoir and |λ〉E = a†λ |0〉E is the state with one photon in the mode λ. The
total state of the system has the form

|ψ(t)〉 = c0(t) |ψ0〉+ c1(t) |ψ1〉+
∑
λ

cλ(t) |ψλ〉 , (51)

where cX(t) are the amplitudes of each state. The Schrödinger equation for this state in
the interaction picture is

d

dt
|ψ(t)〉 = −iĤI(t) |ψ(t)〉 , (52)

where ĤI(t) =
∑

λ

(
gλσ+aλe

i(ω0−ωλ)t + g∗λσ−a
†
λe
−i(ω0−ωλ)t

)
and acts on |ψ(t)〉 as

ĤI(t) |ψ(t)〉


ĤI(t) |ψ0〉 = 0 ,

ĤI(t) |ψ1〉 =
∑

λ g
∗
λe
−i(ω0−ωλ)t |ψλ〉 ,

ĤI(t) |ψλ〉 =
∑

λ′ gλ′e
i(ω0−ωλ′ )tσ+ |−〉S ⊗ aλ′ |λ〉E = gλe

i(ω0−ωλ)t |ψ1〉 ,
(53)

where aλ′ |λ〉 = δλ′,λ |0〉E, σ+ |−〉 = |+〉 and σ− |+〉 = |−〉. Equating the factors that
multiply the same state in both sides of Eq. (52) we end up with the following system of
ordinary differential equations

ċ0(t) = 0 , (54)

ċ1(t) = −i
∑
λ

gλe
i(ω0−ωλ)tcλ(t) , (55)

ċλ(t) = −ig∗λe−i(ω0−ωλ)tc1(t) . (56)
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We assumed that the reservoir was initially in the vacuum state ck(0) = 0. Solving the
third equation and inserting it into the second we get a closed equation for c1(t),

ċ1(t) = −
∫ t

0

dτ
∑
λ

|gλ|2e−iωλ(t−τ)eiω0(t−τ)c1(t) , (57)

where, if we make use of the definitions (12) and (13), we can write∑
λ

|gλ|2e−iωλ(t−τ) =
1

π

∫
dωJ(ω)e−iω(t−τ) = α(t− τ) , (58)

and re-express Eq. (57),

ċ1(t) = −
∫ t

0

dτα(t− τ)eiω0(t−τ)c1(t) . (59)

Note that, in this case, α(t− τ) = TrE{B(t)B†(τ)ρE(0)}, with ρE(0) = (|0〉 〈0|)E the vac-
uum state of the reservoir. We are now prepared to obtain the reduced density matrix dy-
namics of the two level system (TLS) from the the total density matrix ρ̂(t) = |ψ(t)〉 〈ψ(t)|,

ρ̂S(t) = TrE{|ψ(t)〉 〈ψ(t)|} =

(
ρ++(t) ρ+−(t)
ρ−+(t) ρ−−(t)

)
=

(
|c1(t)|2 c∗oc1(t)
c0c
∗
1(t) 1− |c1(t)|2

)
, (60)

where the matrix is expressed in the basis {|±〉} of the TLS, so that, for example, ρ++(t) =
〈+|ρS|+〉, and the normalization condition |co|2 + |c1(t)|2 +

∑
λ |cλ(t)|2 = 1 has been used

in the last element of the matrix. By direct differentiation of Eq. (60) with respect to
time we obtain an equation with the same structure as Eq. (31)

d

dt
ρ̂S(t) = − i

2
S(t) [σ+σ−, ρ̂S(t)] + γ(t)

(
σ−ρ̂S(t)σ+ −

1

2
{σ+σ−ρ̂S(t)}

)
, (61)

where we introduced the definitions

S(t) = −2Im

(
ċ1(t)

c1(t)

)
, and γ(t) = −2Re

(
ċ1(t)

c1(t)

)
, (62)

representing a time-dependent “Lamb shift” and decay rate, respectively. If we switch to
the Schrödinger picture, neglecting the Lamb shift, and express Eq. (61) in terms of each
component of the density matrix, we get the following system of differential equations

ρ̇++(t) = −ρ++(t)γ(t) , (63)

ρ̇−−(t) = ρ++(t)γ(t) , (64)

ρ̇+−(t) = −iω0ρ+−(t)− 1

2
ρ+−(t)γ(t) . (65)

It is useful to define the new quantity G(t) = c1(t)
c1(0)

, which is described by the equation

Ġ(t) = −
∫ t

0

dτα(t− τ)eiω0(t−τ)G(t) , (66)

with initial condition G(0) = 1, which is independent of the initial state of the TLS, in
opposition to Eq. (57).
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We consider the Jaynes-Cummings model (JCM) which describes a two level atom coupled
to a single cavity mode, which in turn is coupled to a series of harmonic oscillators that
are initially in the vacuum state. If we restrict the model to the case of single exitations
in the atom-cavity system, the cavity mode can be eliminated and we have the effective
Hamiltonian of Eq. (47). We consider the case in which the atom transition frequency
and the cavity mode are resonant, although the case in which they were detuned would
be similar. The spectral density function that describes the effect of the electromagnetic
reservoir is the Breit-Wigner distribution

J(ω) =
1

2

γ0λ
2

(ω − ω0)2 + λ2
, (67)

where ω0 is the transition frequency of the TLS. The parameter λ defines the spectral
width of the coupling and γ0 defines to the decay rate of the TLS. This spectral density
gives rise to the exponential decay law of the environment correlations, which is observed
experimentally, when the integration over the frequencies is extended from −∞ to +∞
[13] in the calculation of the correlation function (58). This fact can be viewed as if the
negative frequencies had a physical meaning because of the squared difference in Eq. (67).
If we were treating the case in which the cavity frequency ωcav and the transition frequency
of the TLS were not in resonance, the above distribution would be modified by the addition
of the detuning parameter ∆ = ω0 − ωcav,

J(ω) =
1

2

γ0λ
2

(ω − ω0 + ∆)2 + λ2
. (68)

The correlation function (58) for the spectral density function (67) is given by

α(t− τ) =
1

2
λγ0e

−λ|t−τ |e−iω0(t−τ) . (69)

For this correlation function, Eq. (66) becomes

Ġ(t) = −
∫ t

0

dτf(t− τ)G(t) , (70)

where we defined f(t− τ) = 1
2
λγ0e

−λ|t−τ |, and can be analytically solved by means of the
Laplace transform. The Laplace transform of Eq. (70) is

sĜ(s)−G(0) = −f̂(s)Ĝ(s) , (71)

where Ĝ(s) and f̂(s) are the Laplace transformations of G(t) and f(t), respectively. Mak-
ing use of the initial condition G(0) = 1 and solving for Ĝ(s) we get

Ĝ(s) =
1

s− f̂(s)
, (72)

where

f̂(s) =
1

2
γ0

λ

λ+ s
, (73)

is the Laplace transform of f(t) defined before. Applying the inverse Laplace transform
to Eq. (72) yields the following exact result

G(t) = e−λt/2
[
cosh

(
dt

2

)
+
λ

d
sinh

(
dt

2

)]
, (74)
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where the variable d =
√
λ2 − 2λγ0 was introduced. For this function, the time-dependent

decay rate (62) becomes

γ(t) =
2γ0λ sinh(dt/2)

d cosh(dt/2) + λ sinh(dt/2)
. (75)

Note that the Lamb-shift would be null for this solution. The parameter d introduces a
change of behavior in Eq. (75): if d is real, γ(t) is a monotonous function, but if d is an
imaginary number, γ(t) oscillates. This behavior is determined by the coupling strength.
For small couplings γ0 < λ/2 we have a Markovian behavior of the system and a positive
decay rate γ(t) ≥ 0. For the strong coupling case γ0 > λ/2 we have an oscillatory decay
rate, and at some times it may become negative, yielding non-Markovian dynamics. In
the case of the JCM there is a correspondence between the sign of the decay rate and
non-Markovian behavior because the Lindblad operators in (61) are time independent,
but in general that is not the case.

6.2 Weak ME solution

To obtain a differential equation for the dynamics of the reduced density matrix of the
OQS we need to calculate the correlation functions and the commutators appearing in
Eq. (46). We proceed to calculated the correlation functions in Eq. (44)

α+(t, τ) = TrE{B†(t)B(τ)ρE(0)} =
∑
λ,λ′

g∗λgλ′e
iωλte−iωλ′τTrE{〈0|a†λaλ′|0〉} = 0 , (76)

where the cyclic property of the trace has been used, and also the fact that aλ |0〉 = 0.
The other correlation function is

α−(t, τ) = TrE{B(t)B†(τ)ρE(0)} =
∑
λ,λ′

g∗λgλ′e
iωλτe−iωλ′ t 〈0|aλ′a†λ|0〉 =

=
∑
λ,λ′

g∗λgλ′e
iωλτe−iωλ′ t

(
δλ,λ′ + 〈0|a†λaλ′ |0〉

)
=
∑
λ

|gλ|2e−iωλ(t−τ) , (77)

where the commutation relation [aλ, a
†
λ′ ] = δλ,λ′ has been used. The same procedure

as in Eq. (58) is carried out and considering the spectral function (67) yields the same
correlation function as before (69). Given that the correlation function and the commu-
tators in Eq. (46) for this model depend on the difference t− τ it is suitable to apply the
change of variable m = t − τ , so that dm = −dτ and the limits of integration become
τ = 0 =⇒ m = t and τ = t =⇒ m = 0. With this change of variable and the fact that
α+(t, τ) = 0, Eq. (46) becomes

d

dt
ρS(t) = −i [HS, ρS(t)]

+

∫ t

0

dmα−(m)
[
V−mLρS(t), L†

]
+

∫ t

0

dmα−∗(m)
[
L†, ρS(t)V−mL

]
. (78)

We left the calculation of the commutators to Appendix B.1 which will be useful later for
others models. Splitting Eq. (78) into a system of ordinary differential equations for each
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Figure 3: The left panel represents the upper population as a function of time. The
solid line represent the exact solution, and the dashed one the solution of the ME. We
clearly see that both solutions are in disagreement, as the ME solution only describes a
decay, while the exact one has an initial decay followed by subsequent revivals. The same
situation is true for the correlation function on the right panel. The parameters of these
solutions are ω0 = 1, λ = 0.2 and γ0 = 10λ. The units of λ, γ0 and t are all relative to ω0.

component of the density matrix leads to

ρ̇++(t) = −ρ++(t)

∫ t

0

dm
(
α−(m)eiω0m + α−∗(m)e−iω0m

)
, (79)

ρ̇−−(t) = ρ++(t)

∫ t

0

dm
(
α−(m)eiω0m + α−∗(m)e−iω0m

)
, (80)

ρ̇+−(t) = −iω0ρ+−(t)− ρ+−(t)

∫ t

0

dmα−(m)eiω0m . (81)

Note that ρ̇++(t) = −ρ̇−−(t), which implies that the trace TrSρS(t) = ρ++(t) + ρ−−(t)
will be preserved during the whole evolution, as the variation of one diagonal element is
opposite to the other one. Substituting the expression for the correlation functions, which
cancel out the exponential factors inside the integrals, and direct integration, lead to

ρ̇++(t) = −ρ++(t)γ0(1− e−λt) , (82)

ρ̇−−(t) = ρ++(t)γ0(1− e−λt) , (83)

ρ̇+−(t) = −iω0ρ+−(t)− 1

2
ρ+−(t)γ0(1− e−λt) , (84)

which is very similar to the system (63)-(65) for the exact solution with the difference of
having a different (approximate) decay rate γ′(t) = γ0(1− e−λt).

6.3 Results

The implementation of Eqs. (63)-(65) of the exact solution for the decay (75) and Eqs. (82)-
(84) of the ME solution in a numerical math program, for instance MATLAB, is straight-
forward. The parameter λ is related to the decay time, the higher the value of λ the faster
the TLS system decays to the ground state, and the other way around. The paramater γ0

presents also the same behaviour, but, as explained before, induces a change of behaviour
depending on its relative value to λ. On the one hand, in the strong coupling regime
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Figure 4: These panels represent the upper population for different values of λ shown
in the legend. Again, solid lines represent the exact solution and dashed ones the ME
solution. In the left panel we have plotted solution for a coupling γ0 = 1/3λ and in the
right one for γ0 = 1/10λ for different λ. We clearly see that, the smaller the γ0 is in
comparison to λ the better is the agreement between solutions.

where γ0 > λ/2 the exact and ME solutions have a very different behaviour, in Fig. 3
we compare the exact and the ME solutions, for both the upper popullation ρ++(t) and
the correlation function ρ+−(t). We see that the population initially decays for both so-
lutions, but the weak ME equation solution does not present the revivals that are present
in the exact solution, hence the ME for this regime is not a good representation for the
dynamics of the OQS. On the other hand, in the weak coupling limit γ0 < λ/2, the weak
ME solution closely matches the exact solution, and the match is even better when the
ratio γ0/λ is smaller, as seen in Fig. 4.
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7 Pure dephasing mechanism

The pure dephasing mechanism is a very simple model proposed to investigate the effect of
decoherence present in many quantum-mechanical systems. The physical situation in this
case is the same as before, but we assume that no dissipation is present, that is, there is no
transfer of energy between the OQS and the environment. This model is described by the
same free Hamiltonian as the previous model and the following interaction Hamiltonian

HI = σz ⊗
∑
λ

(gλaλ + g∗λa
†
λ) , (85)

where σz = σ+σ− + σ−σ+ does not yield transitions in the TLS.

7.1 Exact solution

The pure dephasing mechanism has been extensively studied to investigate the effect of
decoherence and the exact solution can be found, for instance, in [14]. Since [σz, H] = 0
the populations of the TLS are not affected by the environment, i.e.,

ρ++(t) =ρ++(0) (86)

ρ−−(t) =ρ−−(0) , (87)

which can be explicitly checked by solving the full system. The evolution of the correlation
term is

ρ+−(t) = e−iω0te−Γ(t)ρ+−(0) , (88)

where the exponential factor is given by

Γ(t) = −1

2

∑
λ

|ξλ|2 , (89)

and

ξλ = 2gλ
1− eiωλt

ωλ
. (90)

We can operate the Γ(t) factor by applying the continuum limit, which in a systematic
way consists on making∑

λ

|gλ|2 →
1

π

∫
dωJ(ω) and ωλ → ω , (91)

leading to

Γ(t) = − 1

π

∫
dω4J(ω)

1− cos(ωt)

ω2
. (92)

Making use of the spectral density (67) and direct integration of (92) completes the exact
solution of this problem. The anallytic solution is quite involved but a numerical solution
can be achieved easily.
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7.2 Weak ME solution

The correlation function in this model do not differ from the previous JCM, as the envi-
ronment is described by the same spectral density function. What will differ in this case
is the form of the coupling between the OQS and the reservoir, given by a different ex-
pression of the commutators in Eq. (46), where now L = L† = σz. The explicit expression
of these commutators is left out to Appendix B.2. The system of ordinary differential
equations becomes

ρ̇++(t) = 0 , (93)

ρ̇−−(t) = 0 , (94)

ρ̇+−(t) = −iω0ρ+−(t)− 2ρ+−(t)

∫ t

0

dm
(
α−(m) + α−∗(m)

)
, (95)

where ∫ t

0

dm
(
α−(m) + α−∗(m)

)
=

∫ t

0

dm
eiω0m + e−iω0m

2
λγ0e

−λm =

λγ0

λ2 + ω2
0

(
λ− λ cosω0te

−λt + ω0 sinω0te
−λt) (96)

7.3 Results

A numerical solution of both the ME and analytic result lead to exactly the same evolution
for the density matrix of the OQS. This happens because the ME assumes the evolution
of the system operators L to be governed by the free Hamiltonian alone. In this case the
exact evolution of the operator L = σz is trivial, σz does not evolve, as well as in the case
of the ME (VtL = L), thats why both solutions coincide. This model is a nice example
to check that the ME derived in section 5 does indeed represent well the evolution of the
OQS.
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8 Model A: Spin-1
2 coupled to a bosonic bath

S

a1 a2

a3

aλ

Figure 5: Schematic picture of Model A. The OQS is coupled, in a star configuration, to
a set of harmonic oscillators aλ.

Now we are going to present a model that describes a more realistic situation. We have the
spin-1

2
system, that could be any quantum system under study whose degrees of freedom

are two or can effectively be described as a TLS, coupled to a reservoir of harmonic
oscillators that are at some finite temperature. The situation under study is depicted in
Fig. 5. This model is very similar to the Weisskopf-Wigner theory described in Section 6
with the difference that the initial state of the reservoir is not the vacuum, but a thermal
state at some finite temperature. This condition cannot be studied analytically and we
have to recourse to the approximate method introduced in Section 5. The thermal state
of the bath is

ρthermE (0) =
e−HEβ

Z
, (97)

where HE is the free Hamiltonian of the bath, β = (kBT )−1 is the inverse temperature
of the bath, with kB the Boltzmann constant, and Z = TrEe

−HEβ is called the partition
function, which ensures the normalization of the density matrix. We need to compute the
correlation functions that characterize this environment

α+(t, τ) =
∑
λ,λ′

g∗λe
iωλtgλ′e

−iωλ′τTrE{a†λaλ′ρ
therm
E (0)} , (98)

and
α−(t, τ) =

∑
λ,λ′

gλe
−iωλtg∗λ′e

iωλ′τTrE{aλa†λ′ρ
therm
E (0)} . (99)

To obtain the explicit form of the traces, we will make use of the cyclic property of the
trace, the commutation relation between bosonic operators, and the commutation relation
of the annihilation/creation operators with the thermal state,

[HE, aλ] = −ωλaλ =⇒ HEaλ = aλHE − aλωλ , (100)

which can be generalized by induction to obtain

Hn
Eaλ = aλ(HE − ωλ)n . (101)

The thermal state can be written as

ρthermE (0) =
1

Z

∑
n

(−1)n
Hn
Eβ

n

n!
, (102)
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so that, when making use of Eq. (101),

ρthermE (0)aλ = aλρ
therm
E (0)eωλβ . (103)

We are now set to calculate the trace

TrE{a†λaλ′ρ
therm
E (0)} = TrE{a†λρ

therm
E (0)aλ′}e−ωλ′β = TrE{aλ′a†λρ

therm
E (0)}e−ωλ′β , (104)

where Eq. (103) has been used in the first identity and the cyclic property of the trace in
the second one. Now making use of the commutation relation [a†λ, aλ′ ] = δλ,λ′ we end up
with

TrE{a†λaλ′ρ
therm
E (0)} =

(
TrE{a†λaλ′ρ

therm
E (0)}+ δλ,λ′TrE{ρthermE (0)}

)
e−ωλ′β , (105)

where the trace of the thermal state is identically unity. Solving for TrE{a†λaλ′ρthermE (0)}
yields

TrE{a†λaλ′ρ
therm
E (0)} = δλ,λ′

1

eωλ′β − 1
≡ δλ,λ′n(ωλ′) , (106)

where the function n(ωλ) is the average thermal number of quanta in the mode ωλ at
the inverse temperature β. A similar calculation is followed for the trace appearing in
α−(t, τ). The correlation functions are simply

α+(t, τ) =
∑
λ

|gλ|2n(ωλ)e
iωλ(t−τ) , (107)

and
α−(t, τ) =

∑
λ

|gλ|2 (n(ωλ) + 1) e−iωλ(t−τ) . (108)

We can rewrite the above equations, in the continuum limit, as

α+(t, τ) =
1

π

∫
dωJ(ω)n(ω)eiω(t−τ) , (109)

α−(t, τ) =
1

π

∫
dωJ(ω)(n(ω) + 1)e−iω(t−τ) , (110)

where, for this model, we are going to use the spectral density function defined in Eq. (15)
for the versatility it presents to describe different environments.

8.1 Weak Master Equation

The ME for this model, making use of the of the commutators calculated in Appendix
B.1, becomes

ρ̇++(t) =

∫ t

0

dm
(
α+(m)ρ−−(t)e−iω0m + α+∗(m)ρ−−(t)eiω0m+ (111)

+ α−(m)(−ρ++(t))eiω0m + α−∗(m)(−ρ++(t))e−iω0m
)
,

ρ̇−−(t) = −
∫ t

0

dm
(
α+(m)ρ−−(t)e−iω0m + α+∗(m)ρ−−(t)eiω0m+ (112)

+ α−(m)(−ρ++(t))eiω0m + α−∗(m)(−ρ++(t))e−iω0m
)
,

ρ̇+−(t) = −iω0ρ+−(t)− ρ+−(t)

∫ t

0

dm
(
α+∗(m) + α−(m)

)
eiω0m , (113)
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where the suitable change of variable m = t− τ was introduced, as α±(t, τ) = α±(t− τ)
and the commutators are functions of the difference t−τ . Note that the trace is preserved
along the evolution as ρ̇++(t) = −ρ̇−−(t). This fact, together with Tr{ρS(t)} = ρ++(t) +
ρ−−(t) = 1, allows to substitute ρ−−(t) by 1 − ρ++(t), and reduce system (111)-(113) to
a system of two differential equations

ρ̇++(t) =

∫ t

0

dm
(
α+(m)e−iω0m + c.c.

)
− ρ++(t)

∫ t

0

dm
(
α+(m)e−iω0m + α−(m)eiω0m + c.c.

)
,

(114)

ρ̇+−(t) =− iω0ρ+−(t)− ρ+−(t)

∫ t

0

dm
(
α+∗(m) + α−(m)

)
eiω0m , (115)

where c.c. is the complex conjugate of the terms in each parenthesis.

8.2 Asymptotic state

The study of the asymptotic state of the OQS can give some insight on the outcome
of the interaction between a system and its environment, while the evolution up to this
asymptotic state is also very important. In the long time limit the OQS may reach a
steady state defined as

ρss = lim
t→∞

ρS(t) , (116)

and characterized by the condition ρ̇ss = 0. If this state is diagonal in the energy eigen-
basis, the steady state is also stationary. Relaxation describes the convergence of the
asymptotic state to an arbitrary state for the OQS, while thermalization is the conver-
gence to the thermal state of the OQS. Thermalization is expected for a second order
weak coupling perturbative ME under the RWA, but that is not the case in general [15],
for instance when the RWA is not considered. We check that, under the assumptions we
took, the OQS is thermalized by the bath. We consider the asymptotic limit (t→∞) of
Eq. (114)

0 =

∫ ∞
0

dm
(
α+(m)e−iω0m + c.c.

)
− ρss++

∫ ∞
0

dm
(
α+(m)e−iω0m + α−(m)eiω0m + c.c.

)
,

(117)
where∫ ∞

0

dm
(
α+(m)e−iω0m + c.c.

)
=

∫ ∞
0

dm

∫ ∞
0

dωJ(ω)n(ω)e−ω/ωc
(
ei(ω−ω0)m + e−i(ω−ω0)m

)
,

(118)
with∫ ∞

0

dm
(
ei(ω−ω0)m + e−i(ω−ω0)m

)
=

∫ ∞
0

dmei(ω−ω0)m −
∫ −∞

0

dmei(ω−ω0)m =

=

∫ ∞
−∞

ei(ω−ω0)m = δ(ω − ω0) , (119)

leading to ∫ ∞
0

dm
(
α+(m)e−iω0m + c.c.

)
= J(ω0)n(ω0)e−ω0/ωc . (120)

And, in a similar fashion,∫ ∞
0

dm
(
α−(m)e−iω0m + c.c.

)
= J(ω0)(n(ω0) + 1)e−ω0/ωc . (121)
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Figure 6: Dynamical evolution of model A for parameters s = 1, ωc = 10, g = 0.01 and
β = 0.1. On the left panel we represent the upper popullation ρ++(t) = 〈+|ρS(t)|+〉 in
blue, and in red the value of ρtherm++ of the thermal state. On the right panel we represented
the correlation function ρ+−(t), both the real and imaginary part, in order to show that the
OQS undergoes decoherence. From these plots we clearly see that the OQS thermalizes to
the thermal state corresponding to the environment temperature. The initial conditions
for these plots are ρ++(0) = 1

2
and ρ+−(0) = 1

2
(1+i)√

2
.

Now solving for ρss++ in Eq. (117) leads to

ρss++ =
J(ω0)n(ω0)e−ω0/ωc

J(ω0)n(ω0)e−ω0/ωc + J(ω0)(n(ω0) + 1)e−ω0/ωc
=

n(ω0)

2n(ω0) + 1
, (122)

where a direct calculation yields

ρss++ =
e−βω0/2

eβω0/2 + e−βω0/2
, and ρss−− = 1− ρss++ =

eβω0/2

eβω0/2 + e−βω0/2
. (123)

Similarly, the asymptotic limit of Eq. (115) becomes

0 = ρss+−

(
−iω0 −

∫ ∞
0

dm
(
α+∗(m) + α−(m)

)
eiω0m

)
, (124)

where one can check that the parenthesis in (124) does not vanish, so that the solution of
this equation corresponds to ρss+− = 0. We can conclude that the asymptotic state of the
Model A is the thermal state

ρss =
e−HSβ

Z
= ρthermS , (125)

where β is the inverse temperature of the bath and Z = Tr{e−HSβ} = 2 cosh(ω0β/2).

8.3 Results

The numerical implementation of Eqs. (114) and (115) requires the calculation of the
correlation functions α+(m) and α−(m). To calculate the correlation functions we have to
do an integration along all the mode frequencies of the environment. Since the calculation
of the correlation functions in the following model requires a discretization in frequencies,
we can not just integrate to infinity. We choose a suitable ωmax and make sure that the

28



10
-2

10
-1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
D

e
c
a

y
 P

a
ra

m
e

te
r 

(a) g = 0.01, s = 1 and ωc = 10.
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Figure 7: Both panels represent the decay parameter λ obtained from the fit (126) for
an initial condition ρ++(0) = 1 as a function of some parameter of interest. The left
panel shows a clear relationship between the inverse temperature of the reservoir and the
thermalization time of the OQS. The right panel shows the λ parameter as a function of
ωc and s. The other paramaters of each plot are shown in the corresponding subcaptions.

result does not change if we increase it: this is satisfied if we set ωmax = 100ω0. We do
this in order to be consistent when comparing this model and model B. Apart from this
detail, the integration to calculate the correlation functions is straightforward, as well as
the numerical integration of the integrals appearing in (114) and (115) with the use of
MATLAB implemented functions. An example of the dynamics of model A is plotted
in Fig. 6, where it can easily be seen that the OQS thermalizes. To check how fast the
OQS thermalizes, we performed the following fit for the dynamical curve of the upper
population

ρ++(t) = ae−λt + ρtherm++ , (126)

where the paramater λ indicates how fast the OQS decays. We run a number of simula-
tions to investigate how the parameters in the spectral density affect the thermalization
decay rate. In Fig. 7a we plotted the fit parameter λ as a function of the inverse tem-
perature of the environment β. In all cases, the OQS achieves thermalization and we see
that, the higher the temperature (small β) the faster the OQS thermalizes. This means
that environments that are at higher temperatures quickly dissipate the OQS. This is
the reason why quantum experiments, which require longer correlation times, are run at
near zero temperatures, for instance in quantum computing. We also investigated how
the width in modes of the reservoir ωc and the parameter s affect the thermalization in
Fig. 7b. We see that for the value s = 1, corresponding to a Ohmic bath, the thermaliza-
tion is slower than for any other value. We also found that, the broader the spectrum is,
the faster the OQS thermalizes.
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9 Model B: Spin-1
2 coupled to a bosonic bath, which

in turn is coupled to a second bosonic bath
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Figure 8: Schematic picture of Model B. The OQS is coupled in a star configuration to a
set of harmonic oscillators aλ, which are coupled to their own individual baths of harmonic
oscillators bλk.

The standard scenario considered in the theory of OQS is that studied before, in which
the open system is directly coupled to a single reservoir. However, it is not so well studied
the situation where the OQS is coupled to a first reservoir (RI), that is in turn coupled
to a second reservoir (RII). This second reservoir continuously thermalizes the first one,
which in turn is taken out of equilibrium via its interaction with the OQS. We are going
to consider the situation in which the harmonic oscillators in RI are coupled to the ones
in RII in a star configuration, that is, each harmonic oscillator in RI has its own bath
independent of the others, see Fig. 8 for a schematic picture. The Hamiltonian describing
this situation is

H =
1

2
ω0σz +HE +

∑
λ

(
g∗λσ−a

†
λ + gλσ+aλ

)
, (127)

where the Hamiltonian of the environment, HE, is now more complex. It is composed by
the free evolution of each bath, and an interaction term between them

HE =
∑
λ

ωλa
†
λaλ +

∑
λ,k

ωλ,kb
†
λkbλk +

∑
λ,k

(
g̃λkaλb

†
λk + g̃∗λka

†
λbλk

)
, (128)

where bλk are the harmonic oscillator operators with frequency ωλ,k of RII coupled to the λ-
th mode of RI and g̃λk are the coupling strength constants between the harmonic oscillators
in RI and RII. These operators obey the commutation relation [bλk, b

†
λ′k′ ] = δλ,λ′δk,k′ . Note

that the decay of a bath mode in RI is accompanied by the creation of a boson in RII
and viceversa.

We consider that RI and RII are initially uncorrelated and at different inverse temper-
atures β1 and β2, respectively. The initial state of the whole environment is ρE(0) =

30



ρRI(0)⊗ ρRII(0). In this particular situation the correlation functions take the following
form

α+(t, τ) = TrE{B(t)†B(τ)ρE(0)} = TrI,II{B(t)†B(τ) (ρRI(0)⊗ ρRII(0))}
α−(t, τ) = TrE{B(t)B†(τ)ρE(0)} = TrI,II{B(t)B†(τ) (ρRI(0)⊗ ρRII(0))} , (129)

where B(t) =
∑

λ gλaλ(t) =
∑

λ gλe
iHEtaλe

−iHEt needs to be computed. The evolution of
aλ(t) is given by

d

dt
aλ(t) = i [HE, aλ(t)] = −iωλaλ(t)− i

∑
k

g̃λkbλk(t) , (130)

and the evolution of the opeators of RII is

d

dt
bλk(t) = i [HE, bλk(t)] = −iωλ,kbλk(t)− ig̃λkaλ(t) . (131)

We can formally integrate the latter equation

bλk(t) = bλk(0)e−iωλ,kt − ig̃λk
∫ t

0

dt′aλ(t
′)e−iωλ,k(t−t′) , (132)

and substitute this expression for bλk(t) in (130) to yield

d

dt
aλ(t) = −iωλaλ(t)− i

∑
k

g̃λkbλk(0)e−iωλ,kt −
∑
k

g̃2
λk

∫ t

0

dt′e−iωλ,k(t−t′)aλ(t
′) . (133)

We can see that the operator aλ will oscillate with a frequency close to ωλ. It is suitable
to introduce the slow rotating variable

ãλ(t) = eiωλtaλ(t) , (134)

which allows to correctly consider the Markovian limit. The evolution of the new variable
is then

d

dt
ãλ(t) = iωλãλ(t) +

(
d

dt
aλ(t)

)
eiωλt , (135)

where, using the previous result (133), yields

d

dt
ãλ(t) = −i

∑
k

g̃λkbλk(0)e−i(ωλ,k−ωλ)t −
∑
k

g̃2
λk

∫ t

0

dt′e−i(ωλ,k−ωλ)(t−t′)ãλ(t
′) . (136)

The first term is the quantum noise of RII, and can be rewritten as Fλ(t) = eiωλtfλ(t)
with

fλ(t) = −i
∑
k

g̃λkbλk(0)e−iωλ,kt . (137)

The integral in the last term of Eq. (136) can be simplified by considering that ãλ(t
′)

varies with a rate much slower than ωλ, so that it can be taken out of the integral∫ t

0

dt′e−i(ωλ,k−ωλ)(t−t′)ãλ(t
′) ≈ ãλ(t)

∫ t

0

dt′e−i(ωλ,k−ωλ)(t−t′) . (138)
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This is called the Weisskopf-Wigner approximation [2, 16], which can be ragarded as a
Markovian approximation, as the dynamics of ãλ(t) only depend on t and not on past
instants of time. Since the time scale of the evolution of ãλ(t) is much slower than the
exponential inside the integral the integration limit can be extended to infinity and apply
the Sokhotski–Plemelj theorem to get∫ ∞

0

dτe−i(ωλ,k−ωλ)τ = πδ(ωλ,k − ωλ)− iP
(

1

ωλ,k − ωλ

)
, (139)

where we introduced the change of variable τ = t− t′, and P is the Cauchy principal part.
Making use of these approximations, the last term in Eq. (136) can be rewritten as∑

k

g̃2
λk

∫ t

0

dt′e−i(ωλ,k−ωλ)(t−t′)ãλ(t
′) ≈ γλãλ(t) , (140)

where we defined the damping constant

γλ = JII(ωλ)− i
∑
k

g̃2
λkP

(
1

ωλ,k − ωλ

)
, (141)

and the spectral density of RII is defined as JII(ω) = π
∑

k g
2
λkδ(ωλ,k−ω). The imaginary

part in a decay rate plays the role of a frequency shift, it is in fact a contribution to the
Lamb’s shift, and we will neglect it. Making use of these definitions, we find that

d

dt
ãλ(t) = −γλãλ(t) + Fλ(t) , (142)

which can be analytically solved to give

ãλ(t) = ãλ(0)e−γλt +

∫ t

0

dt′e−γλ(t−t′)Fλ(t
′) , (143)

and the evolution the original operator now reads

aλ(t) = aλ(0)e−(iωλ+γλ)t +

∫ t

0

dt′e−(iωλ+γλ)(t−t′)fλ(t
′) . (144)

We are now set to compute the correlation functions (129) and first note that the first term
in aλ(t) depends on aλ(0) = aλ, and the second one on operators on RII. When operating
aλ(t)

†aλ(τ) the terms lineal in operators of either RI or RII are null by reseasons explained
before, but terms quadratic in these operators are not. The non-null terms of α+(t, τ) are

α+(t, τ) =
∑
λ,λ′

g∗λgλ′e
(iωλ−γλ)te(−iωλ′−γλ′ )τTrI,II{a†λaλ′(ρRI(0)⊗ ρRII(0))}

+
∑
λ,λ′

g∗λgλ′

∫ t

0

dt′
∫ τ

0

dt′′e(iωλ−γλ)(t−t′)e(−iωλ′−γλ′ )(τ−t′′)TrI,II{f †λ(t′)fλ′(t
′′)(ρRI(0)⊗ ρRII(0))},

(145)

where

TrI,II{a†λaλ′(ρRI(0)⊗ ρRII(0))} = TrI{a†λaλ′ρRI(0)}
���

���
��:1

TrII{ρRII(0)} = δλ,λ′n
I(ωλ) , (146)
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with nI(ωλ) the average thermal number of quanta in the mode ωλ at the inverse temper-
ature βI of RI, as calculated for Model A. The other trace can be computed as∑

k,k′

g̃∗λkg̃λ′k′e
iωλ,kt

′
e−iωλ′,k′ t

′′
TrII{b†λk(0)bλ′k′(0)ρRII(0)} , (147)

with
TrII{b†λk(0)bλ′k′(0)ρRII(0)} = nII(ωλk)δλ,λ′δk,k′ , (148)

and, similarly, nII(ωλk) is the average thermal number of quanta of the k-th mode in the
λ-th reservoir at the inverse temperature βII of the RII. With the values of these traces,
Eq. (145) reduces to

α+(t, τ) =
∑
λ

|gλ|2nI(ωλ)eiωλ(t−τ)e−γλ(t+τ)

+
∑
λ,k

|gλ|2|g̃λk|2nII(ωλk)
∫ t

0

dt′e−i(ωλ−ωλ,k+γλ)t′
∫ τ

0

dt′′ei(ωλ−ωλ,k+γλ)t′′eiωλ(t−τ)e−γλ(t+τ) .

(149)

Evaluating the integrals, using the definition Ωk,λ = ωλ − ωλ,k and simplying leads to

α+(t, τ) =
∑
λ

|gλ|2nI(ωλ)eiωλ(t−τ)e−γλ(t+τ)

+
∑
λ,k

|gλ|2|g̃λk|2nII(ωλk)
(
eiωλ,kt − e(iωλ−γλ)t

−iΩλ,k + γλ

)(
e−iωλ,kτ − e(−iωλ−γλ)τ

iΩλ,k + γλ

)
. (150)

Similarly the remaining correlation function becomes

α−(t, τ) =
∑
λ

|gλ|2(nI(ωλ) + 1)e−iωλ(t−τ)e−γλ(t+τ)

+
∑
λ,k

|gλ|2|g̃λk|2(nII(ωλk) + 1)

(
e−iωλ,kt − e(−iωλ−γλ)t

iΩλ,k + γλ

)(
eiωλ,kτ − e(iωλ−γλ)τ

−iΩλ,k + γλ

)
.

(151)

The ME equations of this model looks like Eqs. (114) and (115) with the difference that
the correlation functions, after the change of variable, are α+(t, t−m) and α−(t, t−m),
which are now dependent of two variables t and m. After this change of variable and the
continuum limit the correlation functions become

α+(t, t−m) =
1

π

∫
dωJI(ω)nI(ω)eiωme−JII(ω)(2t−m)

+
1

π

∫
dω

1

π

∫
dω′JI(ω)JII(ω

′)nII(ω′)

×
(

eiω
′t − e(iω−JII(ω))t

−i(ω − ω′) + JII(ω)

)(
e−iω

′(t−m) − e(−iω−JII(ω))(t−m)

i(ω − ω′) + JII(ω)

)
, (152)

and similarly for α−(t, t−m).
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Figure 9: The left panel represents the decay rate towards thermalization as a function
of ωc for model A and B. A clear tendency is followed by both models, but model B does
it at a lower rate. The right panel represents the thermalization rate as a function of
the coupling between environments, g2. When the coupling is stronger the OQS decays
slower.

9.1 Numerical implementation

The ME for this model is exactly the same as for model A, the only difference resides
in the correlation functions. To calculate the correlation functions, we had to develope
a numerical code to first obtain a 2 dimensional grid with the values of the correlation
functions α±(t,m). To do this calculation, we divided the correlation function into two
parts: one which is just a simple integral in ω (1st term in Eq. (152)) and a second that is
a double integral (2nd term in Eq. (152)). The first term calculation is easy, as in the case
of model A, the second one requires to first give discrete values to ω′ from 0 to ωmax in
intervals ∆ω′, and to obtain for each of this values the numerical integral with respect to
ω in the same interval ω ∈ [0, ωmax]. Then we have to numerically integrate with respect
to ω′ each discrete value obtained. This process has to be repeated for each value of t
and m. Note that since the integration of the correlation functions is from m = 0 to t
we only have to calculate half the grid. The last operation that has to be performed is
to multiply the correllation function by the different exponentials appearing in Eqs. (114)
and (115) and numerically integrate along the dimension m of the grid. From this point
on, any ODE solver of MATLAB is good at solving the ME. We parallelized all the for
loops we could to reduce the simulation time, which for a typical simulation up to t = 10
takes half an hour.

9.2 Results

We explored what happens to the OQS when both reservoirs are at the same temperature,
and also the case where the reservoirs are at a different temperature. In both cases we
consider all the parameters, except the temperature, equal for both reservoirs, that is, both
baths have the same s and the same bandwidth parametrized by ωc. To be consistent
with the approximations made to derive the correlation functions of model B, we take

34



0 5 10 15 20 25 30

t

0.44

0.45

0.46

0.47

0.48

0.49

0.5
+

+
(t

)

Model B

++
therm(

1
)

++
therm(

2
)

(a) β1 < β2

0 5 10 15 20 25 30

t

0.44

0.45

0.46

0.47

0.48

0.49

0.5

+
+
(t

)

Model B

++
therm(

1
)

++
therm(

2
)

(b) β1 > β2

Figure 10: The panel on the left represents the situation where the temperature of RI
higher than the one of RII. The panel on the left represent the opposite situation. In
both panels the blue line represents the evolution of the upper popullation of the OQS
for the initial condition ρ++(0) = 1/2. In red line is represented the upper population of
the thermal state for β2 and in orange for β1. In both cases the OQS seems to thermalize
to a thermal state with temperature β2 of the RII.

a weak coupling constant between both reservoirs. We will denote by g1 the coupling
constant between the OQS and the first reservoir, and by g2 the one between reservoirs.

When both thermal baths are at the same temperature we observe a similar behaviour as
in model A, but since there is a structure between RI and RII the evolution of the OQS
does not necessarily mimic the one in model A. The RI has to be in equilibrium for the
OQS to be able to thermalize. Since the OQS takes out of equilibrium the RI and this one
is in turn coupled to a RII, the equilibrium condition is harder to achieve. We carried out
the same study as in model A for the decay rate towards the thermal state, as a function
of the parameter ωc. We took ωc1 = ωc2 = ωc. In Fig. 9a we plotted the comparison
between the decay rate in model A and B. Both models follow the same tendency with
ωc, but in all cases the model A thermalizes faster than model B. This effect was checked
for a value g2 = 0.01. We also investigated how the strenght of the coupling between both
baths affects the thermalization of the OQS in Fig. 9b. We kept all values constant, and
only varied g2, which reduces the decay rate of the OQS for bigger values. The case were
g2 is null represents model A. From this graphic and the previous one it can readily be
seen that the OQS thermalizes slower in the presence of a second reservoir.

When the baths have different temperatures, the process of thermalization might be
harder to achieve or even not possible, since the equilibrium between reservoirs might
not be reached. In Fig. 10a we show a simulation where β1 < β2 and, in Fig. 10b, one
with β1 > β2. We can speculate from this graphics that the bath that dominates the
thermalization is the second reservoir. It would make sense, since each mode of the RI is
like another OQS with its own environment, meaning that the RII would thermalize RI
at the temperature β2 and then the OQS would thermalize to a state with that inverse
temperature. We emphasize that these results are not conclusive, and a more extensive
study of the system should be conducted.
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10 Conclusions and future perspectives

In this work, the theory of open quantum systems has been introduced along with the
presentation of some canonical models and the charaterization of the environment. The
evolution of OQS has been inspected, together with the concept of Markovianity. A
perturbative method has been introduced to study the evolution of OQS, and then applied
to a variety of situations. It is of special interest the case where the environment is
coupled to a second reservoir. We have simulated different environments with a variety
of parameters, upon which we base the following conclusions.

First of all, the ME derived in section 5 correctly describes de dynamics of the OQS in the
weak coupling limit. The ME description of the dynamics is limited due to the fact that
we trace out the environment, and no information about it is available, apart from the
correlation functions. We checked that this ME does indeed represent well the evolution
of the OQS by comparison with some models that have an anallytic solution.

We used the weak coupling ME to study the situation of a spin-1
2

system coupled to a
bosonic bath, and explored how the properties of the environment affect the thermal-
ization time scale. We found that, when the spectral density of the bath is wider, the
thermalization occurs in shorter time scales. We also found that, when the temperature
of the reservoir is higher, the OQS thermalizes faster, and that Ohmic reservoirs present
slower thermalization decay rates.

The situation where the OQS is coupled to a reservoir that is in turn coupled to a second
one has not been, to our knowledge, explored in the literature, and the concepts are
not clear at first glance. We found that, in the case that both reservoirs have the same
properties, the inclusion of a second reservoir causes a decrease in the thermalization
rate of the OQS, and also that this decay is slower when the coupling between baths is
stronger, but still inside the range of the weak coupling limit. This can be understood,
in a qualitative way, by considering that the perturbation the OQS induces onto the RI
are also transfered to the RII, meaning that now the two baths are outside equilibrium.
The RI has to be in equilibrium so that the OQS can thermalize, and this equilibrium
might be harder to achieve under the presence of a second reservoir, when the additional
time scale of RII is present, which can delay the thermalization. In the case where the
two baths are at different temperatures, the thermalization occours at a much larger time
scale, as expected, since the equilibrium conditions of the reservoirs are harder to achieve.

The idea of introducing the second reservoir can be explored using different models. This
work has the natural continuation in a doctoral thesis to develope this new idea and, for
instance, by considering the configuration presented in Fig 11, where the OQS is coupled
to the RI in a star configuration, and the RI is coupled to a common reservoir of harmonic
oscillators RII. The Hamiltonian of the environment for this model is

HE =
∑
λ

ωλa
†
λaλ +

∑
k

ωkb
†
kbk +

∑
λ,k

(
g̃kaλb

†
k + g̃∗ka

†
λbk

)
, (153)

where bk are the harmonic oscillators operators with frequency ωk of RII and g̃k is the
coupling strength constant between any mode of RI and the k-th oscillator of RII. These
operators obey the commutation relation [bk, b

†
k′ ] = δk,k′ . It will be also very interesting

to fully understant the process of thermalization from a wider point of view. A full study
of the system should be performed to understand the equilibrium conditions that both

36



S

a1 a2

a3

aλ

b1

b2

b3

bk

a1 a2

a3

aλ

Figure 11: Schematic picture of Model C. The OQS is coupled, in a star configuration,
to a set of harmonic oscillators aλ, which are coupled to a common bath of harmonic
oscillators bk.

baths follow. There are techniques such as matrix product states [17] and tensor networks
[18] that allow to study the full system, and trace out any subspace to focus, for instance,
on what happens to the RI.
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Appendices

A Weak coupling ME calculations

We left the more laborious calculations of section 5 to this appendix to allow for a fluent
reading.

A.1 TrE [VtHI(t), ρ̂(0)] = 0 for an arbitrary state of the environ-
ment.

We have that V 0
t HI = VtL B†(t) + VtL

† B(t), and that the initial state of the system is
uncorrelated, i.e., ρ(0) = ρS(0)ρE(0). We now have

TrE [VtHI(t), ρ̂(0)] = TrE
[
VtL B

†(t) + VtL
† B(t), ρS(0)ρE(0)

]
=

= TrE
[
VtL B

†(t), ρS(0)ρE(0)
]

+ TrE
[
VtL

† B(t), ρS(0)ρE(0)
]
. (154)

If we focus on the first term (the result is similar for the second one),

TrE
[
VtL B

†(t), ρS(0)ρE(0)
]

=TrE{VtLρS(0)B†(t)ρE(0)− ρS(0)VtLρE(0)B†(t)} =

= [VtL, ρS(0)] TrE{B†(t)ρE(0)} , (155)

where the cyclic property of the trace has been used. Then the trace for a general state
of the environment ρE(0) =

∑
k pk |k〉 〈k| is

TrE{B†(t)ρE(0)} =
∑
k,l

〈l|B†(t)|k〉 pk 〈k|l〉 , (156)

where 〈k|l〉 = δkl and

〈l|B†(t)|k〉 =
∑
λ

g∗λ 〈l|a
†
λ|k〉 =

∑
λ

g∗λδl,k+1 , (157)

which will lead to a null result of the trace since we have two deltas with mismatching
indices inside the sumatory.

A.2 Computation of TrE
[
V 0
t HI(t),

[
V 0
τ HI(τ), ρ̂(0)

]]
We first compute the commutator of the first term in the interaction Hamiltonian with
the total density matrix[
VτL

† ⊗B(τ), ρS(0)⊗ ρE(0)
]

= VτL
†ρS(0)⊗B(τ)ρE(0)−ρS(0)VτL

†⊗ρE(0)B(τ) , (158)

and then operate the commutator of that with the second term of the interaction Hamil-
tonian, to end up with the trace of a B and a B† operators, because, if we end up with
the trace of two B or two B† operators, the trace becomes null, in a similar fashion as in
the previous section. With that in mind,

TrE
[
VtL⊗B†(t),

[
VτL

† ⊗B(τ), ρS(0)⊗ ρE(0)
]]

=

VtLVτL
†ρS(0)TrE{B†(t)B(τ)ρE(0)} − VtLρS(0)VτL

†TrE{B†(t)ρE(0)B(τ)}−
VτL

†ρS(0)VtLTrE{B(τ)ρE(0)B†(t)}+ ρS(0)VτL
†VtLTrE{ρE(0)B(τ)B†(t)} .

(159)
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Making use of the cyclic property of the trace we can group the previous equation into
two commutators

TrE{B†(t)B(τ)ρE(0)}[VtL, VτL†ρS(0)]+

TrE{B(τ)B†(t)ρE(0)}[ρS(0)Vτ , L
†VtL] , (160)

To calculate the other non-null term of TrE [V 0
t HI(t), [V

0
τ HI(τ), ρ̂(0)]] a similar procedure

is followed to yield the final result

TrE{B†(t)B(τ)ρE(0)}
[
VtL, VτL

†ρS(0)
]

+ TrE{B(τ)B†(t)ρE(0)}
[
ρS(0)Vτ , L

†VtL
]

+

TrE{B(t)B†(τ)ρ̂E(0)}
[
VtL

†, VτLρS(0)
]

+ TrE{B†(τ)B(t)ρE(0)}
[
ρS(0)VτL

†, VtL
]
.

(161)

A.3 Switching to the Schrödinger picture

The Schröndinger picture density matrix operator, in terms of the operator in the inter-
action picture, is

ρS(t) = e−iHStρ̂S(t)eiHSt , (162)

and the derivative of this operator becomes

d

dt
ρS(t) = (−iHS)e−iHStρ̂S(t)eiHSt + e−iHStρ̂S(t)eiHSt(iHS) + e−iHSt

(
d

dt
ρ̂S(t)

)
eiHSt .

(163)
The first two terms can be gathered into the commutator −i [HS, ρS(t)], and the third
one needs to be explicitly computed from Eq. (45). We will compute the action of these
exponentials on the first commutator

e−iHSt
[
VτL

†ρ̂S(t), VtL
]
eiHSt =e−iω0teiω0τL†e−iω0τeiω0tρS(t)e−iω0teiω0tLe−iω0teiω0t−

e−iω0teiω0tLe−iω0teiω0τL†e−iω0τeiω0tρS(t)e−iω0teiω0t (164)

where direct cancellation of some exponentials and e−iω0teiω0τL†e−iω0τeiω0t = Vτ−tL
† lead

to
Vτ−tL

†ρS(t)L− LVτ−tL†ρS(t) =
[
Vτ−tL

†ρS(t), L
]
. (165)

The same procedure is followed to compute the remaining commutators in the Schrödinger
picture.
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B Commutators of weak coupling ME for different

OQS operators L

We left the computation of the commutators appearing in the weak ME for different
operators acting on the system to this appendix.

B.1 L = σ− (L† = σ+)

[
V−mL

†ρS(t), L
]

=

(
ρ−−(t)e−iω0m 0
−ρ−+(t)e−iω0m −ρ−−(t)e−iω0m

)
(166)

[
L, ρS(t)V−mL

†] =

(
−ρ++(t)e−iω0m 0
−ρ−+(t)e−iω0m ρ++(t)e−iω0m

)
(167)

[
V−mLρS(t), L†

]
=

(
−ρ++(t)eiω0m −ρ+−(t)eiω0m

0 ρ++(t)eiω0m

)
(168)

[
L†, ρS(t)V−mL

]
=

(
ρ−−(t)eiω0m −ρ+−(t)eiω0m

0 −ρ−−(t)eiω0m

)
(169)

B.2 L = L† = σz

[
V−mL

†ρS(t), L
]

=
[
V−mLρS(t), L†

]
=

(
0 −2ρ+−(t)

−2ρ−+(t) 0

)
(170)

[
L†, ρS(t)V−mL

]
=
[
L, ρS(t)V−mL

†] =

(
0 −2ρ+−(t)

−2ρ−+(t) 0

)
(171)

(172)

B.3 [HS, ρS(t)]

[HS, ρS(t)] =
ω0

2

(
0 2ρ+−(t)

−2ρ−+(t) 0

)
(173)
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[4] Ángel Rivas and Susana F. Huelga. Open Quantum Systems. Springer, 2012.

[5] Inés de Vega and Daniel Alonso. Dynamics of non-markovian open quantum systems.
Rev. Mod. Phys., 89:015001, Jan 2017.

[6] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg,
and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys.,
59:1–85, Jan 1987.

[7] E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radia-
tion theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–
109, Jan 1963.

[8] A.O. Caldeira and A.J. Leggett. Path integral approach to quantum brownian mo-
tion. Physica A: Statistical Mechanics and its Applications, 121(3):587 – 616, 1983.

[9] A.O Caldeira and A.J Leggett. Quantum tunnelling in a dissipative system. Annals
of Physics, 149(2):374 – 456, 1983.

[10] G. Lindblad. On the generators of quantum dynamical semigroups. Communications
in Mathematical Physics, 48(2):119–130, Jun 1976.

[11] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan. Completely pos-
itive dynamical semigroups of n-level systems. Journal of Mathematical Physics,
17(5):821–825, 1976.

[12] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo. Measure for the degree of
non-markovian behavior of quantum processes in open systems. Phys. Rev. Lett.,
103:210401, Nov 2009.

[13] H. Jakobovits, Yehuda Rothschild, and J. Levitan. The approximation to the expo-
nential decay law. American Journal of Physics, 63(5):439–443, 1995.

[14] G. Massimo Palma, Kalle-Antti Suominen, and Artur K. Ekert. Quantum comput-
ers and dissipation. Proceedings: Mathematical, Physical and Engineering Sciences,
452(1946):567–584, 1996.

[15] Eitan Geva, Efrat Rosenman, and David Tannor. On the second-order corrections to
the quantum canonical equilibrium density matrix. The Journal of Chemical Physics,
113(4):1380–1390, 2000.

[16] V. Weisskopf and E. Wigner. Berechnung der natürlichen linienbreite auf grund der
diracschen lichttheorie. Zeitschrift für Physik, 63(1):54–73, Jan 1930.

41



[17] Benedikt Bruognolo, Zhenyue Zhu, Steven R. White, and E Miles Stoudenmire.
Matrix product state techniques for two-dimensional systems at finite temperature.
SciPost Physics, 05 2017.

[18] Roman Orus. A Practical Introduction to Tensor Networks: Matrix Product States
and Projected Entangled Pair States. Annals Phys., 349:117–158, 2014.

42


	Introduction
	OQS Models
	Spin-Boson model
	Caldeira-Leggett model

	Characterizing the environment
	Evolution, Dynamical Maps, Master Equations and Markovianity
	A non-Markovianity measure

	Derivation of a weak coupling ME
	Weisskopf-Wigner theory of spontaneous decay
	Exact solution
	Weak ME solution
	Results

	Pure dephasing mechanism
	Exact solution
	Weak ME solution
	Results

	Model A: Spin-12 coupled to a bosonic bath
	Weak Master Equation
	Asymptotic state
	Results

	Model B: Spin-12 coupled to a bosonic bath, which in turn is coupled to a second bosonic bath
	Numerical implementation
	Results

	Conclusions and future perspectives
	Appendices
	Weak coupling ME calculations
	TrE[ Vt HI(t), (0)]=0 for an arbitrary state of the environment.
	Computation of TrE[V0t HI(t),[V0HI(), (0)]]
	Switching to the SchrÃ¶dinger picture

	Commutators of weak coupling ME for different OQS operators L
	L=-  (L=+)
	L=L=z
	[HS,S(t)]

	Bibliography

